Accelerated Extra-Gradient Descent: A Novel Accelerated First-Order Method

نویسندگان

  • Jelena Diakonikolas
  • Lorenzo Orecchia
چکیده

We provide a novel accelerated first-order method that achieves the asymptotically optimal con-vergence rate for smooth functions in the first-order oracle model. To this day, Nesterov’s AcceleratedGradient Descent (agd) and variations thereof were the only methods achieving acceleration in thisstandard blackbox model. In contrast, our algorithm is significantly different from agd, as it relies ona predictor-corrector approach similar to that used by Mirror-Prox [11] and Extra-Gradient Descent [7]in the solution of convex-concave saddle point problems. For this reason, we dub our algorithmAccelerated Extra-Gradient Descent (axgd).Its construction is motivated by the discretization of an accelerated continuous-time dynamics [8]using the classical method of implicit Euler discretization. Our analysis explicitly shows the effects ofdiscretization through a conceptually novel primal-dual viewpoint. Finally, we present experimentsshowing that our algorithm matches the performance of Nesterov’s method, while appearing morerobust to noise in some cases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Mirror Descent in Continuous and Discrete Time

We study accelerated mirror descent dynamics in continuous and discrete time. Combining the original continuous-time motivation of mirror descent with a recent ODE interpretation of Nesterov’s accelerated method, we propose a family of continuous-time descent dynamics for convex functions with Lipschitz gradients, such that the solution trajectories converge to the optimum at a O(1/t2) rate. We...

متن کامل

Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent

First-order methods play a central role in large-scale convex optimization. Even though many variations exist, each suited to a particular problem form, almost all such methods fundamentally rely on two types of algorithmic steps and two corresponding types of analysis: gradient-descent steps, which yield primal progress, and mirror-descent steps, which yield dual progress. In this paper, we ob...

متن کامل

FLAG: Fast Linearly-Coupled Adaptive Gradient Method

The celebrated Nesterov’s accelerated gradient method offers great speed-ups compared to the classical gradient descend method as it attains the optimal first-order oracle complexity for smooth convex optimization. On the other hand, the popular AdaGrad algorithm competes with mirror descent under the best regularizer by adaptively scaling the gradient. Recently, it has been shown that the acce...

متن کامل

Continuous optimization, an introduction

2 (First order) Descent methods, rates 2 2.1 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 What can we achieve? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Second order methods: Newton’s method . . . . . . . . . . . . . . . . . 7 2.4 Multistep first order methods . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.1 Heavy ball method . ...

متن کامل

Conditional Accelerated Lazy Stochastic Gradient Descent

In this work we introduce a conditional accelerated lazy stochastic gradient descent algorithm with optimal number of calls to a stochastic first-order oracle and convergence rate O( 1 ε2 ) improving over the projection-free, Online Frank-Wolfe based stochastic gradient descent of Hazan and Kale [2012] with convergence rate O( 1 ε4 ).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018